sábado, 22 de octubre de 2011

La Polarización De La Luz

Las ondas luminosas no suelen estar polarizadas, de forma que la vibración electromagnética se produce en todos los planos. La luz que vibra en un solo plano se llama luz polarizada.

Supongamos un dispositivo experimental consistente en dos polarizadores superpuestos (polarizador y analizador), de forma que un haz de luz los atraviese, y que uno de ellos puede girar respecto del otro, que permanece estático. La intensidad luminosa transmitida por el sistema variará con el ángulo de giro, de tal manera que pasará por dos puntos de máxima luminosidad separados 180º, con dos puntos de oscuridad total a 90º de los anteriores. Entre estos extremos la intensidad va creciendo y decreciendo paulatinamente, según los casos.
Este fenómeno de polarización solo se da con ondas transversales, pero no con longitudinales, ya que implica una asimetría respecto del eje en la dirección de propagación. Si se demuestra que un haz luminoso puede ser polarizado, llegaremos a la conclusión de que las ondas luminosas son transversales.
La luz emitida por un manantial está constituida por una serie de trenes de ondas procedentes de átomos distintos; en cada uno de estos trenes de ondas el campo eléctrico oscila en un plano determinado pero, en general, su orientación es distinta de unos a otros. Dado el enorme número de moléculas y átomos de un manantial luminoso, se comprende el gran número de trenes de ondas que constituye un haz de luz y, por consiguiente, la existencia en éste de ondas polarizadas en todas las direcciones transversales posibles.
Veamos algunos casos en los que se produce polarización de la luz.

Polarización por reflexión. 
Sabemos que si sobre una superficie reflectora incide luz natural parte de la luz se refleja y parte se refracta. Malus descubrió en 1808 que si hacemos incidir una luz sobre una superficie pulimentada de vidrio con un ángulo de incidencia i de 57º aproximadamente, la luz reflejada está polarizada, siendo el plano de vibración perpendicular al plano de incidencia de los rayos. Si el ángulo de incidencia no es de 57º habrá también polarización pero será menor a medida que el rayo incidente vaya siendo mayor o menor que dicho ángulo.
Más tarde Brewster descubrió que si el rayo reflejado y el refractado forman entre si un ángulo de 90º, el ángulo de incidencia es precisamente el ángulo de polarización. El ángulo de polarización depende del índice de refracción "n" del medio.
En el caso del vidrio, que acabamos de ver, el ángulo es aproximadamente 57º. Hay que señalar también que para este ángulo, el rayo refractado está polarizado parcialmente, coincidiendo su plano de vibración con el de incidencia, mientras que el rayo reflejado está completamente polarizado.

Polarización por doble refracción. 
Hay determinados cristales que tienen la propiedad de la doble refracción, es decir, el rayo incidente se desdobla en dos en el interior del cristal (espato de islandia, turmalina), uno de ellos llamado ordinario y que sigue las leyes de la refracción y otro llamado extraordinario que no las sigue.
Este tipo de cristal permite obtener luz polarizada partiendo de la luz natural, siempre que logremos eliminar a la salida uno de los rayos emergentes. Esto se puede conseguir con un prisma de Nicol, constituido por un cristal de espato de Islandia al que se le han cortado las caras externas de manera que el ángulo de 71º pase a ser de 68º, después se corta la diagonal, obteniéndose dos prismas que se pegan con bálsamo de Canadá, cuyo índice de refracción está entre el indice de refracción del rayo ordinario y el del extraordinario. En estas condiciones el rayo ordinario sufre reflexión total al llegar a la lámina de bálsamo de Canadá, mientras que el extraordinario se refracta en el bálsamo y se transmite a través del segundo prisma.

Polarización rotatoria. 
Hemos visto que un prisma de Nicol puede utilizarse como polarizador, ya que al incidir sobre él la luz naztural obtenemos a la salida del mismo luz polarizada cuyo plano de vibración es paralelo a la sección principal. Si este haz de luz polarizada se hace incidir sobre otro prisma de Nicol cuya sección principal sea perpendicular a la del primero, este haz no podrá penetrar en el segundo Nicol ya que vibra en una sección normal, y por lo tanto no habrá salida de luz del segundo Nicol.
En este caso se dice que los Nicols están cruzados, esto se llama Polarización cruzada. Variando la posición relativa de las secciones principales de los dos Nicols se logrará mayor o menor luz a la salida, desde el valor máximo (prismas de Nicol paralelos) hasta la anulación completa (prismas de Nicol cruzados).


Teorías sobre la luz
Una de las teorías más antiguas sobre la visión suponía que nuestros ojos emitían rayos invisibles. Cuando estos rayos caían en un objeto, retransmitían la sensación a la persona que entonces "veía” el objeto. Esta explicación bastante ingenua fue reemplazada por varios conceptos aún válidos.

La teoría corpuscular
Siempre que imaginamos que la luz se propaga en línea recta, nos podemos hacer la idea de que se comporta como una corriente de partículas avanzando en línea recta, como las bolas en una mesa de billar. El nombre antiguo que se puso a estas partículas imaginarias fue "corpúsculos.” Hoy en día llamamos a estas partículas "fotones”. Este concepto es útil para la descripción de muchos fenómenos ópticos como, por ejemplo, la reflexión de la luz en un espejo (Figura 1), o el enfoque de la luz por medio de lentes.  La luz está representada por rayos, los cuales son líneas rectas ideales. Cabe mencionar que este tratamiento es meramente descriptivo y no explicativo. Los dibujos geométricos sólo reproducen lo que pasa, pero no explican el porqué del fenómeno. La teoría corpuscular no sirve para explicar los procesos que forman parte de la polarización de la luz. Sin embargo, en su forma moderna,


Figura 1. La teoría corpuscular. La línea se comporta como si estuviera formada
por partículas.



es decir, forma de "fotón”, sí que explica lo que sucede cuando se producen cambios de energías debido a la absorción de luz por algún objeto. Por ejemplo, la fotoelectricidad que se produce en los fotómetros que usan los fotógrafos sólo es explicable asumiendo que un haz de luz consiste en partículas indivisibles. Estas bombardean la superficie sensible del fotómetro provocando emisión de electrones que forman una corriente eléctrica débil, pero mensurable. Los cambios que ocurren cuando se expone una película fotográfica en una cámara también se explican mejor por medio de la teoría corpuscular.


La hipótesis de ondas de Huygens
Este concepto, desarrollado por el científico holandés Christian Huygens en el siglo XVII, supone que la luz se comporta de la misma forma que el sonido — o sea que se trata de un movimiento ondulatorio trasladado por algún medio. Pensemos en un objeto sonante, como pe. una campana, imaginemos que emite “capas esféricas” de perturbación al aire que la rodea. Estas capas se expanden rápidamente, seguidas por otras capas, mientras el sonido continúe. Usando esta analogía, podríamos imaginar que una fuente de luz también produce ondas esféricas que se expanden (Figura 2) alrededor de la fuente.
La teoría de Huygens es útil a la hora de explicar el fenómeno de refracción, el cual ocurre siempre que la luz pasa de un medio a otro. La forma mejor y más clara de explicar el cambio de dirección que se observa en el haz de luz, y que es inherente a la refracción en general, es describirlo como un cambio de velocidad de la onda. Aquella parte frontal de la capa ondulatoria que entra en el nuevo medio es la primera que cambia de velocidad. Así, la parte frontal completa cambia de dirección. En este caso particular, la teoría de las ondas de Huygens es superior a la teoría corpuscular. Sin embargo, la teoría de Huygens es inadecuada para explicar muchas otras formas de comportamiento de la luz, incluyendo la

de la polarización. Esta deficiencia de la teoría de Huygens es atribuible al comportamiento del medio que traslada las perturbaciones. En las ondas de sonido, las partículas de aire vibran en dirección paralela a la dirección en que se propaga la onda. Las ondas de este tipo se llaman "longitudinales”. La polarización de la luz, como veremos, sólo puede explicarse, suponiendo que las ondas de luz se comportan en forma distinta a las ondas de sonido en este respecto.

La teoría de las ondas transversales
Esta teoría compara el comportamiento de la luz con las ondulaciones del agua. Vista desde arriba, se ven círculos concéntricos en la superficie del agua que se propagan de forma anular, visto de lado, se ven ondas, dentro de las cuales el agua se mueve en dirección más o menos perpendicular a la dirección
de propagación de la onda. Según la teoría de las ondas transversales el movimiento de la luz ocurre de forma similar a la propagación de estos círculos concéntricos, con la idea adicional de que, en un haz luminoso horizontal ordinario, la propagación del medio (hipotético) puede ser vertical, horizontal o en cualquier ángulo, siempre que el movimiento sea perpendicular a la dirección del haz de luz. (Figura 3).
Una analogía mecánica a esta teoría puede observarse (demostración 1) en las ondas formadas por una manguera de goma de laboratorio de una longitud de aproximadamente 1 a 1,5 metros, colocada en el suelo en forma más o menos lineal. Si se agarra un extremo de la manguera y se sacude de forma arbitraria, vertical, horizontal y en otros ángulos, puede observarse una propagación compleja de ondas, verticales, horizontales y en otros ángulos, que parten de la mano y desaparecen en el extremo suelto de la manguera. Si el otro extremo de la manguera se fija, allí se forman ondas reflectadas, las cuales retornan a la mano. Esto hace que el movimiento de las ondas se vuelva más complejo. En las ondulaciones del agua no hay ondas tan complejas. En éstas, el movimiento del agua produce, casi siempre, en dirección vertical. Es difícil imaginar el comportamiento del "medio” que transporta las ondas transversales de luz. No obstante, los fenómenos de la polarización hacen suponer que en las ondas de luz tiene que haber un movimiento transversal.
Inicialmente se postuló que la luz se transmitía en un medio denominado "éter.” Posteriormente, las conclusiones del famoso experimento de Michelson-Morley pusieron de manifiesto que el éter no existía, por lo que se llegó a la conclusión que no hacía falta ningún medio para propagar la luz. Esta conclusión, durante un tiempo, pareció contradecir teoría de que la luz se comportaba como una onda. Más recientemente, la teoría de la relatividad de Einstein indicaba que no existía ningún método por medio del cual podamos determinar la velocidad absoluta del éter. Actualmente, la mayoría de los físicos no creen en la  posibilidad de comprobar experimentalmente la existencia o no existencia del éter. De hecho, el problema se ha dejado de lado hasta que se solucionen otros problemas más instructivos. Hoy en día se considera que la luz tiene aspectos similares a los que tienen los campos eléctricos y magnéticos en el entorno de un hilo conductor de corriente alterna. Por eso, la luz se agrupa, junto con otras formas similares de energía radiante, en el espectro electromagnético. Para una información más extensa


Resumen
A fin de "explicar” el comportamiento de la luz, hay una gran variedad de conceptos útiles, aunque sean diferentes, y en cierto modo contradictorios. Para algunos fenómenos, es suficiente, y a veces incluso necesario, que se piense en la luz como una corriente de partículas; para otros, es mejor imaginar la luz similar a las ondas de sonido. La teoría probablemente más sofisticada y en general más aplicable
requiere que se trate la luz como un complicado movimiento de ondas transversales. La polarización de la luz sólo puede entenderse aplicando esta última teoría.


Polarizadores naturales

Los efectos luminosos producidos por determinados cristales ofrecen un punto de partida lógico para el estudio de la polarización.

DEMOSTRACIÓN II
Poner una tarjeta opaca delante de la fuente de luz. Esta tarjeta debe tener un poro pequeño (de aproximadamente 1 mm de diámetro) cerca del centro, y enfocar la imagen del orificio en la pantalla.

a. Poner delante del orificio un trozo de vidrio. Se verá que la imagen simple pierde algo de brillo, debido a la luz que se pierde al ser reflejada por las superficies del vidrio. Observe como la imagen cambia ligeramente de posición si el cristal se coloca de modo que la luz no caiga en la superficie del
vidrio en ángulo recto.


 b. Poner el cristal de calcita delante del orificio. La calcita es una forma natural de carbonato de calcio, afín a la piedra caliza. Las superficies planas de este cristal no son artificiales, sino que se forman durante el proceso de cristalización. Fíjese en la imagen doble, cada una de las cuales es aproximadamente la mitad de brillante que el haz luminoso original. Las imágenes pueden resultar ligeramente borrosas, debido a pequeños defectos en el cristal, pero eso no tiene importancia. Fíjese en que siempre se ven dos imágenes, cualquiera que sea la orientación del cristal. Observe que, al girar el cristal entorno a un eje paralelo al haz luminoso, una de las imágenes se mantiene casi fija en su sitio, mientras que la otra gira alrededor de ésta. Estas observaciones permiten obtener las siguientes conclusiones:

1. Si un haz de luz es refractado por un vidrio, la luz sigue un sólo camino.
2. Si un haz de luz es refractado por un cristal de calcita, de alguna manera se divide la luz en dos partes, cada una de las cuales contiene aproximadamente la mitad de la energía del haz original. Aquella parte de la luz que forma la imagen estacionaria es el rayo "ordinario”; el resto es el rayo "extraordinario”.

En la Figura 5 se ve un diagrama de rayos que muestra qué debe estar ocurriendo en estas dos situaciones diferentes. Explicamos la refracción de la luz como un cambio de la velocidad de la luz al penetrar un nuevo medio. El hecho de que la luz atraviese el vidrio siguiendo un sólo camino óptico, implica que dentro del vidrio, la luz, consideraciones de longitud de onda aparte, tiene una sola velocidad.
Por consiguiente, el vidrio tiene un índice de refracción simple. El hecho de que la luz atraviese el cristal de calcita por dos caminos ópticos, implica que la luz atraviesa la calcita a dos velocidades diferentes, y por consiguiente, la calcita debe tener dos índices de refracción diferentes. Empleamos el término "birrefringencia” para describir el comportamiento de la calcita y otros cristales similares. La diferencia que acabamos de demostrar entre el vidrio y la calcita, se debe a las diferentes estructuras moleculares de las dos sustancias. Se piensa que vidrio consiste en moléculas de distribución aleatoria. La calcita, en  cambio, tiene una orientación molecular precisa, con las moléculas y los átomos ubicados en una estructura exacta. Un indicio de esta orientación viene dado por las superficies planas del cristal, las cuales forman los ángulos definidos que caracterizan esta sustancia. Podríamos pensar en el cristal como en un trozo de madera; igual que la madera se parte fácilmente según el sentido
de las fibras, pero no en contra del mismo, así también se comporta la luz, atravesando el cristal con más facilidad siguiendo "el sentido de la fibra” que yendo en contra de éste. A pesar de que los dos rayos de luz producidos por refracción doble no muestran diferencias visibles exceptuando en la ubicación, puede demostrarse (Demostración III, abajo) que existe una diferencia fundamental entre ambos. El rayo de
luz que entra en el cristal contiene ondas transversales que oscilan en muchas direcciones distintas (véase Figura 3c). Sin embargo, cada uno de los dos rayos que salen del cristal, consiste en luz que vibra en una sola dirección. Aquellas ondas del rayo original que oscilaban sólo en dirección vertical u horizontal emergen en el rayo que les corresponde. Las ondas que vibraban en otros ángulos estaban compuestas por ondas verticales y horizontales. El cristal separa cada componente y la asigna al rayo correspondiente. Cada onda forma parte del rayo inicial que contiene todo tipo de vibraciones, y tendrá una componente vertical y una horizontal. Cada una de estas componentes aparece en el rayo apropiado. Por consiguiente, no hay pérdida de energía. Por eso decimos que ambos rayos están integrados por luz polarizada plana, con las dos direcciones de oscilación en ángulo recto. Véase Figura 6. La luz polarizada plana puede imitarse mediante la manguera ya usada en la demostración 1, si la mano se mueve sólo en dirección vertical. Las ondas de agua están polarizadas: siempre oscilan en dirección vertical o prácticamente vertical. Además de la calcita existen muchos más cristales birrefringentes. La diferencia entre los dos índices de refracción puede ser mínima (en hielo, los índices son 1,309 y 1,313) o bastante grande (en calcita los índices son 1,486 y 1,658).
Para experimentos con luz polarizada es necesario separar los dos rayos de luz polarizada. Una técnica bastante compleja, empleada en el prisma de Nicol, consiste en serrar un cristal de calcita en un ángulo exacto y luego volver a juntar las dos piezas mediante un cemento especial. Si esto se hace de forma correcta, el rayo ordinario se refleja hacia un lado en la capa de cemento, y sólo el rayo extraordinario emerge de la parte frontal del cristal, es decir, con este método se obtiene luz totalmente polarizada en un plano. Los prismas de Nicol son muy caros y suelen tener una apertura relativamente pequeña, ya que es difícil encontrar cristales grandes de calcita de calidad satisfactoria. Se han descubierto otros cristales naturales, como, pe., la turmalina que no sólo son birrefringentes, sino que también tienen la propiedad (que no tiene la calcita) de absorber completamente uno de los dos rayos. Así, la luz que emerge de esos cristales está polarizada linealmente. Sin embargo, es difícil de conseguir cristales de turmalina de suficiente claridad e incoloros.


Polarizadores sintéticos

Los cristales artificiales que sirven para la polarización de la luz se conocen desde hace más de un siglo. Sin embargo, sólo desde hace poco existe la posibilidad de confeccionar, con estos cristales y también con otros materiales, polarizadores de alta calidad y de apertura muy grande.
La primera lámina polarizada se confeccionó con una gran cantidad de cristales sintéticos minúsculos, todos colocados, con la misma orientación, en una lámina de plástico. Estos cristales eran agujas de tamaño submicroscópico, cada una de una longitud de una micra (la millonésima parte de un metro). Cada cristal actuaba del mismo modo que la turmalina, causando la refracción doble de la luz, pero dejando emerger sólo uno de los dos rayos de luz. En un plástico especial (alcohol polivinílico) tratado químicamente con iodo, las moléculas largas del plástico son alineadas estirando el material durante
la fabricación y sirven como agentes polarizadores. Comparados con los polarizadores disponibles anteriormente (prismas de Nicol y cristales de turmalina), las láminas polarizadoras son mucho más
asequibles y se pueden fabricar en tamaños mucho más grandes.


Polarización por reflexión.
Muchos tipos de superficies de reflexión polarizan parte de la luz que reflejan.

Demostración VI
Ajustar el dispositivo de proyección (una lámpara de bolsillo, u otra fuente de luz que produzca un haz de luz bastante estrecho) de forma que el haz de luz se extienda de un lado al otro de la sala. Poner el bloque de plástico negro o un pedazo de vidrio regular delante de la fuente de proyección para reflejar un rayo de luz a la pared frontal de la sala. Colocar el bloque de plástico de forma que el ángulo entre el mismo y el rayo de luz sea de aproximadamente 40 °, (vea Figura 7.) Girar un polarizador de capa delgada en el haz reflectado. Fíjese en cómo cambia la intensidad del haz de luz. Es casi cero en algunas posiciones del polarizador. Cambiar el ángulo entre la superficie del plástico y el haz de luz de la fuente de proyección. Fíjese en que, entonces, el giro del polarizador causa un cambio mucho menor en la intensidad del punto de luz en la pared. Repita la demostración con una superficie metálica reflectante, como pe. un pequeño espejo de metal o un trozo liso de hoja de aluminio. Observe que no es posible formar un ángulo entre la superficie metálica y el polarizador que cause un cambio notable en la luminosidad del punto de luz reflejado. Explicación: Las superficies brillantes no metálicas polarizan
la luz por medio de reflexión. La polarización máxima ocurre en un ángulo determinado. El ángulo de máxima polarización es aquel cuya tangente es igual al índice de refracción del material. El ángulo se mide entre la línea de incidencia de la luz y una línea perpendicular a la superficie. Las superficies metálicas brillantes no polarizan la luz reflectada en el mismo grado que lo hace el cristal. Aplicaciones: Los filtros de polarización usados por los fotógrafos absorben aproximadamente la mitad de la luz incidente. Además, si están situados en un ángulo de 30 a 40 ° respecto a la línea visual, los filtros de polarización eliminan gran parte de las reflexiones brillantes del agua, escaparates, superficies pintadas o barnizadas o plásticos. Como estas reflexiones muchas veces ocurren al aire libre, el empleo de filtros de polarización permite ver "a través de” las reflexiones deslumbrantes.

Polarización por dispersión
La luz que es refractada por partículas minúsculas, en general suele ser parcialmente polarizada.

Demostración VII
Añadir dos o tres gotas de leche o un poco de solución de jabón o almidón a una caja de batería llena de agua. Una
botella cuadrada de un litro es un buen sustituto de la caja de batería (Figura 8a.) La mezcla tendrá un color ligeramente azulado. Ajustar el proyector, o una fuente de iluminación similar, de modo que la luz atraviese la mezcla horizontalmente. Fíjese en que el haz de luz puede verse con facilidad. Esto se debe a que las partículas minúsculas que flotan en el agua difractan la luz entrante. La luz aparece azulada porque las partículas dispersan longitudes de onda cortas con más eficacia que las largas. Debido a un efecto similar en la atmósfera, el cielo aparece azul. Poner un polarizador de capa delgada entre la caja de agua y los observadores y girar el polarizador. Fíjese en que hay una variación en la luminosidad de la luz reflectada. La variación más notable se observa en la dirección perpendicular al haz de luz, mientras que al mirar desde unos ángulos casi paralelos al haz de luz se nota poco cambio.

Explicación: Una mezcla de ondas con diferentes direcciones de vibración cae sobre las partículas, lo cual las incita a moverse causando ondas secundarias. Todas las ondas originales con plano de vibración paralelo a la línea visual del observador, causarían un movimiento oscilatorio de las partículas con relación al observador. Pero la luz es un movimiento transversal de ondas. Este tipo de movimiento de partículas sería ineficaz en cuanto a la producción de ondas secundarias. Sólo un movimiento transversal de las partículas podría causar ondas transversales, y éstas oscilarían en dirección vertical. Por tanto, la luz que se observa es aquella que se polariza verticalmente. Si el ángulo es casi paralelo al haz de luz, casi todo movimiento de la partícula será aproximadamente transversal al la línea visual. Por eso, no hay polarización efectiva en esta dirección. (Véase Figura 8b) Aplicación: La luz reflectada por dispersión en las partículas en la atmósfera es parcialmente polarizada. Donde más se nota este efecto, es al mirar desde una dirección más o menos perpendicular a los rayos directos del sol.

Este fenómeno puede aprovecharse en la fotografía de paisajes, para producir un efecto plástico. Un filtro de polarización se coloca delante del objetivo de la cámara, con el filtro orientado de modo que se produzca una variación sutil en el tono del cielo desde el horizonte al cenit. El resultado es especialmente agradable en la fotografía en color. Las nubes no se menoscaban por un filtro de polarización, ya que las gotas de agua son demasiado grandes. Algunos científicos consideran la posibilidad de que las aves se
orienten en sus migraciones porque sean capaces de detectar la polarización atmosférica y de esta  manera encuentren su camino por medio de una 'brújula' de polarización.

Efectos retardadores
Los fenómenos más hermosos y a la vez útiles en relación con la luz polarizada se basan en el principio siguiente: muchas sustancias birrefringentes separan la luz polarizada en dos componentes, las cuales poseen diferentes velocidades de propagación dentro de la sustancia. Cuando los dos rayos emergen de la sustancia, se vuelven a juntar. Sin embargo, como uno de los rayos se ha propagado a mayor velocidad el otro, suelen estar desfasados el uno respecto al otro. El grado de desfase de las dos componentes depende de la estructura de la sustancia birrefringente, de su grosor, y de la longitud de onda de la luz correspondiente. (véase Apéndice)


1 comentario:

  1. Se nota que NO hicieron resumen, parece que aplicaron la opción más fácil, seleccionar, copiar y pegar de todo lo que encontraron en Internet, espero lo corrijan.
    Gustavo Nuñez Peña

    ResponderEliminar